Приложение 2 к РПД Дискретная математика 44.03.05 Педагогическое образование (с двумя профилями подготовки) направленность (профили) Математика. Физика Форма обучения – очная Год набора – 2022

ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

1. Общие сведения

1.	Кафедра	Математики, физики и информационных технологий					
2.	Направление подготовки	44.03.05 Педагогическое образование (с двумя профилями					
		подготовки)					
3.	Направленность (профили)	Математика. Физика					
4.	Дисциплина (модуль)	Б1.О.03.04 Дискретная математика					
5.	Форма обучения	Очная					
6.	Год набора	2022					

2. Перечень компетенций

ОПК-8: Способен осуществлять педагогическую деятельность на основе специальных научных знаний

3. Критерии и показатели оценивания компетенций на различных этапах их формирования

Этап формирования	Формируемая компетенция	Критерии и показатели оценивания компетенций			Формы контроля
компетенции (разделы, темы дисциплины)		Знать:	Уметь:	Владеть:	сформированности компетенций
Функции алгебры логики	ОПК-8	основные понятия, теоремы и факты теории булевых функций,	решать типовые задачи на булевы функции, минимизацию ДНФ	алгоритмами минимизации ДНФ	Решение задач
Графы	ОПК-8	основные понятия и теоремы теории графов	решать типовые задачи теории графов	способами анализа графов	Коллоквиум
Элементы комбинаторики	ОПК-8	основные понятия комбинаторики	решать типовые задачи комбинаторики	главными смысловыми аспектами понятий комбинаторики	Коллоквиум
Грамматики и автоматы	ОПК-8	основные понятия и теоремы формальных грамматик и автоматов	решать типовые задачи на КС-грамматики, автоматы, регулярные выражения	методами использования формальных грамматик и автоматов в практике программирования.	Коллоквиум

Шкала оценивания в рамках балльно-рейтинговой системы: «неудовлетворительно» — 60 баллов и менее; «удовлетворительно» — 61-80 баллов; «хорошо» — 81-90 баллов; «отлично» — 91-100 баллов

4. Критерии и шкалы оценивания

4.1 Решение задач

- 20 баллов выставляется, если студент решил все рекомендованные задачи.
- 16-19 баллов выставляется, если студент решил не менее 80% рекомендованных задач.
- 8-15 баллов выставляется, если студент решил не менее 40% рекомендованных задач.
- 0-7 баллов если студент выполнил менее 40% задания.

4.2 Коллоквиум

- 10-13 баллов выставляется, если студент ответил на все основные и дополнительные вопросы.
- 7-9 баллов выставляется, если студент ответил на все основные вопросы, но опустил некоторые важные детали.
- 4-6 балла выставляется, если студент ответил на половину вопросов.
- 0-3 баллов если студент не ответил на вопросы или ответил частично.
- 1. Типовые контрольные задания и методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

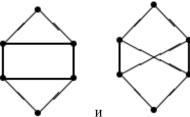
5.1Типовые контрольные задания на решение задач

Задание 1.

Задача 1. Система булевых функций F={f, g, h} такова, что f∉L, f∉P0∩P1, g∈M, g∉L, f→g≡1, f∨h≡1. Доказать, что F полна.

Задача 2. Дано множество булевых функций $F = \{0, 1, x+y+z, xy+xz+yz, xy+z, x \lor y\}$.

Найти все подмножества F, являющиеся базисами.


Задача 3. Для ДНФ ϕ известны все ее простые импликанты:

 x_2x_4 , $x_0x_1x_4$, x_3x_4 , $x_0x_2x_3$, $x_0x_1x_2$, $x_0x_1x_2$, $x_0x_1x_4$, $x_1x_2x_3$, $x_0x_1x_3$.

Вычислить ядро этой ДНФ.

Задание 2.

Задача 1. Пусть G_1 и G_2 – два графа с одним и тем же множеством вершин. Пусть для любых различных вершин x, y ребро $\{x, y\}$ принадлежит хотя бы одному из этих графов. Доказать, что хотя бы один граф G_1 или G_2 является связным.

Задача 2. Доказать, что графы

не изоморфны.

Задача 3. Доказать, что если в простом графе (без петель и кратных ребер) все вершины имеют разные степени, то в этом графе только одна вершина.

Задача 4. Доказать, что если в простом графе (нет петель и кратных ребер) все вершины имеют степень не меньше чем 3, то в этом графе есть цикл длины не меньше чем 4.

Задание 3.

Задача 1. Возможно ли для длин $\{2,3,3,3,4,4,4,5,5,5,5\}$ элементарных кодов для символов алфавита $\{a,b,c,d,e,f,g,h,i,j,k\}$ построить префиксное разделимое бинарное кодирование? Если да, построить такое кодирование.

Задача 2. С помощью алгоритма Хаффмена построить оптимальное алфавитное префиксное бинарное кодирование символов алфавита $\{a,b,c,d,e,f,g,h\}$ для следующего распределения вероятностей этих символов $P=\{0.11,0.11,0.14,0.1,0.16,0.21,0.1,0.07\}$.

Задача 3. С помощью алгоритмов Хаффмена и Фано построить алфавитное префиксное бинарное кодирование символов алфавита {*a,b,c,d,e,f,g,h*} для следующего распределения вероятностей этих

символов $P=\{0.1, 0.11, 0.1, 0.31, 0.07, 0.1, 0.07, 0.14\}$. Сравнить цену кодирования результатов.

Задание 4.

Задача 1. На языке Бэкуса-Наура определить множество натуральных чисел как цепочек знаков {0,1,...,9}, у которых первый знак – не ноль.

Задача 2. Найти КС-грамматику, порождающую язык $\{a^nb^ma^mb^n \mid n\geq 0, m\geq 0\}$.

Задача 3. Описать язык, порождаемый грамматикой с правилами $S \rightarrow 10S0 \mid \varepsilon$

Задача 4. Найти є-свободную грамматику, эквивалентную грамматике

 $S \rightarrow \varepsilon$, $S \rightarrow aSbS$

Задача 5.Найти КС-грамматику, эквивалентную данной и без цепочных правил.

 $S \rightarrow 1A0|B0$

 $A \rightarrow 1A \mid C$

 $B \rightarrow B0|C$

 $C \rightarrow 1C0|\varepsilon$

Задача 6. Построить регулярную грамматику для идентификаторов. Идентификатор состоит из букв, цифр и символов " " и начинается обязательно с буквы.

Задача 7. Построить регулярную грамматику, генерирующую регулярное выражение $(101)^*$ $(010)^*$

Задание 5.

Задача 1. Построить минимальный детерминированный автомат, который распознает множество слов алфавита $\{a,b,c\}$, в которых для каждых вхождений букв a,b, где a стоит левее b, имеется хотя бы одно вхождение буквы c, стоящее между этими a и b.

Задача 2. Построить конечный автомат, распознающий цепочки в алфавите $\{a, b\}$, в которых символ a не встречается два раза подряд.

5.2 Вопросы к коллоквиуму

Вопросы к коллоквиуму 1.

- 1. Булевы функции. Выразимость функций алгебры логики.
- 2. Полные системы функций. Объяснить полноту &, v, '
- 3. Замкнутые классы.
- **4.** Классы P₀, P₁, S.
- 5. Класс монотонных функций М.
- 6. Полиномы Жегалкина. Способ находить полином по таблице.
- 7. Полиномы Жегалкина. Класс L.
- 8. Замыкание класса функций.
- 9. Теорема Поста.
- 10. Предполные классы Поста.
- 11. Релейно-контактные схемы.
- 12. Понятие графа. Порядок графа, Степень вершины.
- 13. Подграф, объединение графов, пересечение графов, дизъюнктная сумма графов.
- 14. Изоморфизм графов.
- 15. Маршрут, замкнутый маршрут, цепь, цикл.
- 16. Связность и компоненты связности.
- 17. Эйлеровы циклы и графы, Теорема Эйлера.
- 18. Двудольные графы.
- 19. Деревья. Критерий быть деревом.
- 20. Гамильтоновы циклы и графы.
- 21. Планарные графы. Формула Эйлера для планарных графов.

Вопросы к коллоквиуму 2

- 1. Перестановки, размещения, сочетания без повторений.
- 2. Перестановки, размещения, сочетания с повторениями.
- 3. Треугольник Паскаля. Бином Ньютона.
- 4. Формула включения-исключния.

- 5. Задача о числе беспорядков.
- **6.** Числа Стирлинга II-го рода.
- 7. Формальные грамматики. Вывод. Язык грамматики.
- 8. Классификация грамматик Хомского.
- 9. Язык Бэкуса-Наура.
- 10. Алгоритм избавления от бесполезных нетерминалов.
- 11. Понятие эпсилон-свободной КС-грамматики алгоритм приведения к эпсилон-свободной.
- 12. Алгоритм избавления от цепочных правил.
- 13. Нормальная форма Хомского и алгоритм приведения к нормальной форме Хомского.
- 14. Теорема о накачке КС-языков.
- 15. Регулярные грамматики языки и теорема о накачке для регулярных языков.
- 16. Конечные автоматы. Автоматный язык. Автоматные и регулярные языки.
- 17. Конечные детерминированные автоматы. Алгоритм приведения.
- 18. Минимальный детерминированный автомат. Алгоритм построения.

5.3 Вопросы к экзамену

- 1. Булевы функции. Выразимость функций алгебры логики.
- 2. Полные системы булевых функций. Полнота &, , ,
- 3. Замкнутые классы булевых функций. Замкнутость P0, P1, S, M, L.
- 4. Полиномы Жегалкина. Единственность представления полиномом.
- 5. Теорема Поста о полноте класса булевых функций.
- 6. Связность графов и компоненты связности. Деревья. Критерий быть деревом.
- 7. Двудольные графы.
- 8. Эйлеровы циклы и графы. Теорема Эйлера.
- 9. Планарные графы. Формула Эйлера для планарных графов.
- 10. Перестановки, размещения, сочетания без повторений и с повторениями.
- 11. Бином Ньютона и формула включения-исключения.
- 12. Число беспорядков. Формула. Рекурентные формулы для числа беспорядков.
- 13. Числа Стирлинга 2-го рода. Комбинаторный смысл. Рекурентная формула.
- 14. Алгоритм избавления от бесполезных нетерминалов в КС-грамматиках.
- 15. Понятие эпсилон-свободной КС-грамматики алгоритм приведения к эпсилон-свободной.
- 16. Алгоритм избавления от цепочных правил в КС-грамматиках.
- 17. Теорема о накачке КС-языков.
- 18. Теорема о накачке для регулярных языков.
- 19. Автоматный и регулярный языки.
- 20. Эквивалентность конечных автоматов детерминированным автоматам.
- 21. Теорема о минимальных детерминированных автоматах.
- 22. Регулярные выражения и теорема о языках, определяемых регулярными выражениями.